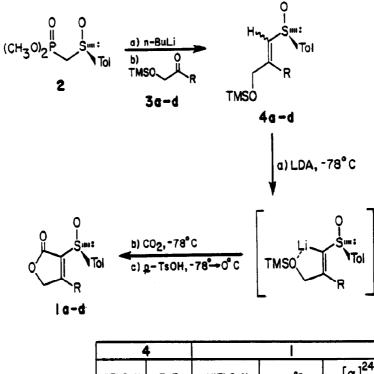
AN EFFICIENT SYNTHESIS OF CHIRAL 2-(p-TOLYLSULFINYL)-2-BUTENOLIDES

Robert A. Holton* and Hyeong-Baik Kim

Dittmer Laboratory of Chemistry¹ The Florida State University Tallahassee, Florida 32306 U.S.A.


Summary: A high yield, two-step synthesis of enantiomerically pure 2 - (p - tolyl - sulfinyl) - 2-butenolides has been developed. The method is applicable to the preparation of butenolides having a variety of substituents in the 3-position.

Chiral α -sulfinyl α,β -unsaturated carbonyl compounds have recently attracted much interest due to their ability to direct the conjugate addition of organocopper or magnesium reagents with a high degree of stereocontrol. Futhermore, the sulfinyl group may be subsequently removed, thereby providing convenient preparations of a variety of 3-alkyl cycloalkanes of high optical purity.²

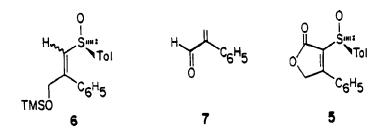
This methodology has recently been extended to include the conversion of S-(+)-2-(<u>p</u>-tolylsulfinyl)-2-buten-4-olide (<u>la</u>) to the lignan lactone (-)-podorhizon.³ For this purpose, the preparation of <u>la</u> in five steps and 20% overall yield from <u>E</u>-3-iodo-2-propen-1-ol was developed.^{3,4}

Due to our interest in studying the stereochemical course of the Michael addition⁵ and its application to the synthesis of various natural products, we sought a more efficient method for the construction of la which would also be of sufficient generality to provide access to a variety of β -alkyl substituted 2-(p-tolylsulfinyl)-2-butenolides. We now report the realization of this goal in a short (two step), efficient synthesis of sulfinyl butenolides la-d having extremely high optical purity.

The Wittig-Horner reaction⁶ of the lithic derivative of (+)-(R)-dimethylphosphorylmethyl <u>p</u>-tolyl sulfoxide $(2)^7$ with trimethylsiloxy carbonyl compounds 3a-d⁸ gave optically active (R) vinyl sulfoxides 4a-d. The vinyl sulfoxide mixtures 4a-d isomerized^{9,7b} to provide predominantly the <u>E</u> lithio derivatives $(\tilde{E}/\tilde{Z} >> 10)^{10}$ upon treatment with LDA (1.2 equiv) in THF solution at -78°C (-95°C for 3a) for 15 min. These solutions were quenched by the introduction of gaseous CO₂ at -78°C, followed by the introduction of <u>p</u>-toluenesulfonic acid at -78°C, with subsequent warming to 0°C to allow desilylation and cyclization to 2-(<u>p</u>-tolylsulfinyl)butenolides la-d. The overall yields for the conversion of 4a-d to 1a-d are 50-65%, ¹¹ and the optical purities of la-d are all greater than 98% ee.¹²

	YIELD, %	Z/E	YIELD, %	m.p., °C	$\left[\alpha\right]_{D}^{24.6^{\circ}}$
a, R=H	70	171	70	115-118	+ 242
b , R=CH3	84		67	79-82	+169
C , R=n-Bu	82	3/2	78	61-63	+156
d , R=	82	3/2	75	56-58	+150

The following is an experimental procedure for the conversion of 4 to 1. Workup A is for 1b, 1c, and 1d and workup B is for 1a, differing due to the relative acid and base sensitivity and water solubility of the compounds.


To a solution of LDA (1.2 mmol) in 6 mL of THF at -78°C (-95°C for la under a nitrogen atmosphere was added a solution of 4 (1 mmol) in 2 mL of THF

down the side of the flask. The mixture was stirred at -78° C (-95° C for la) for 15 min, CO₂ gas was bubbled into the mixture for 30 min at -78° C, p-toluenesulfonic acid monohydrate (2.7 mmol) was added and the mixture was slowly warmed to 0°C.

<u>Workup A</u> (for 1b, 1c and 1d): After stirring for 10 min at 0°C, the reaction mixture was diluted with 30 mL of CH_2Cl_2 , washed with cold water, washed three times with cold saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, and concentrated below 10°C. Recrystallization from ether-pentane provided colorless crystals of 1b, 1c, or 1d.

<u>Workup</u> <u>B</u> (for <u>la</u>): After stirring for 5 min at 0°C, the turbid reaction mixture was filtered through an anhydrous magnesium sulfate pad which was then washed with 10 mL of ethyl acetate. The combined filtrate was concentrated below 10°C and the residue was dissolved in 20 mL of chloroform. The chloroform solution was allowed to stand for 2h at 25°C, then washed with 20 mL of water, dried over anhydrous magnesium sulfate, and concentrated to provide a pale yellow solid. Recrystallization from ethyl acetate-hexane gave colorless crystals of <u>la</u>.

Attempts to prepare 3-phenyl-2- $(\underline{p}$ -tolylsulfinyl)-2-butenolide (5) were unsuccessful. In this case, treatment of vinyl sulfoxide 6 with LDA provided a small amount of aldehyde 7, presumably formed from olefin isomerization and [2.3] signatropic rearrangement, along with unchanged 6.

We have described here an efficient and general new procedure for the two step preparation of 2-(p-tolylsulfinyl)-2-butenolides of high optical purity. Since both enantiomers of 2 are readily available,⁷ either S-(+) or R-(-)-2-(p-tolylsulfinyl)-2-butenolides may be easily prepared by this route.

We are actively intestigating the utility of la-d as Michael acceptors as well as their possible role as intermediates in natural product synthesis.

<u>Acknowledgement</u>: We thank the National Cancer Institute for their generous financial support of our programs.

References and Notes

- (1) A portion of this work was carried out at Virginia Polytechnic Institute and State University.
- (2) (a) Posner, G. H.; Asirvatham, E. J. Org. Chem. <u>1985</u>, <u>50</u>, 2589;
 (b) Posner, G. H.; Frye, L. L.; Hulce, M. <u>Tetrahedron <u>1984</u>, 40, 1401, and references contained therein; (c) For a review, see Posner, G. H. in "Asymmetric Syntheses," Morrison, J. D., Ed., Academic Press, N. Y., 1983, Vol. II, p. 225.
 </u>
- (3) Posner, G. H.; Kogan, T. P.; Haines, S. R.; Frye, L. L. <u>Tetrahedron</u> Lett. <u>1984</u>, 25, 2627.
- (4) Synthesis of racemic la: (a) Barbier, P.; Benezra, C. <u>Ibid. 1982</u>, 23, 3511; (b) Watanabe, M.; Shirai, K.; Kumamoto, T. <u>Chem. Lett</u>. <u>1975</u>, 855; (c) Iwai, K.; Kosugi, H.; Uda, H. Ibid. 1974, 1237.
- (5) Krafft, M.E.; Kennedy, R. M.; Holton, R. A. Tetrahedron Lett. submitted.
- (6) Mikolajczyk, M.; Grezejszczak, J.; Zatorski, A. J. Org. Chem. <u>1975</u>, <u>40</u>, 1979.
- (7) (a) Mikolajczyk, M.; Midura, W.; Grzejszczak, S.; Zatorski, A.; Chefczynska, A. <u>Ibid.</u> <u>1978</u>, 43, 473; (b) Solladie, G.; Moine, G. J. <u>Am. Chem. Soc.</u> <u>1984</u>, <u>106</u>, 6097; (c) Solladie, G. <u>Synthesis</u> <u>1981</u>, 185.
- (8) (a) Aldehyde 3a was prepared by ozonolysis of 1-trimethylsiloxy-3methyl-2-butene; (b) Ketones 3b-d were prepared by the method of Rubottom: Rubottom, G. M.; Gruber, J. M.~J. Org. Chem. <u>1978</u>, 43, 1599.
- (9) Okamura, H.; Mitsuhira, Y.; Miura, M.; Takei, H. Chem. Lett. <u>1978</u>, 517.
- (10) E/Z ratios were determined by ¹H NMR. The chemical shift of the α vinylic protons of 4a-d was ca. $\delta 6.33$ for the <u>E</u> isomers and ca. $\delta 6.00$ for the Z isomers.
- (11) All yields refer to chromatographically and spectrally homogeneous substances (except for E/Z isomers).
- (12) Determined by ¹H NMR in the presence of tris[3-(heptafluoropropylhydroxy-methylene)-d-camphorato], europium (III) derivative, Aldrich catalog # 16,474-7, in CDCl₃ solution.
- (13) Melting points were recorded on a hot stage and are uncorrected. The reported melting point for la is 121-125°C.³

(Received in USA 28 February 1986)

2194